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ABSTRACT 

E\ 
This paper extends t h e  notion of absolute s t a b i l i t y  t o  include 

the  parameter variations of t he  l inear  part of the  system. 

analytic procedure is proposed t o  calculate the  regions of absolute 

A simple 

3 s t a b i l i t y  i n  the  parameter space. Then, a parallelpiped of max'imum 

volume is  imbedded i n  t h e  region t o  interpret  Its boundardes and 

obtain readily t h e  information about parameter variations which do 

not affect  t he  system s t ab i l i t y .  
"c 

i 

INTRODUCTION z09 mod AlllI3Vd 

Stabi l i ty  and sei .si t i \-by are two essential properties of dynamic 

control systems. Whiie s t ab i l i t y  assures a proper .'unctioning of the 

system, the  sen is t iv i ty  indicates t h e  a t i l i t y  of t h e  system t o  re ta in  

required performance characterist ics despite chang s **n the  operating 

conditions. These changes may occur due t o  the  fac t  t ha t  the 
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of physical systems deviate from t h e i r  nominal VRlues ei ther  because 

of inaccuracies i n  the  system cmponents (timebinvariant case) , or 

because the system parameters vary i n  t i m e  (time-varying case). 

fore,  a simultaneous consideration of s t a b i l i t y  and parameter sens i t iv i ty  

There- 

I '  

i n  system analysis is desired. 

The L u r ' e  absolute s t ab i l i t y  concept [l] and t h e  related cr i te r ion  

of Popov [21 are significant contributions t o  s t a b i l i t y  analysis of 

dynamic systems. 

i s  meaningful i n  a large c lass  of closed-loop control systems, and the 

Popov cr i te r ion  provides a simple procedure t o  conclude tha t  kind of 

This is mostly because the absolute s t a b i l i t y  concept 

j 

s t ab i l i t y .  

In the  absolute s t a b i l i t y  analysis, the  nonlinear character is t ic  

is not completely specified and it should only belong t o  a cer ta in  de- 

fined c lass  of f'unctions. On the other hand, t h e  parameters of the  

l inear  part  are specified numerically. This paper proposes an absolute 

s t a b i l i t y  definit ion which w i l l  relax the  conditions on-the l i n e a r  part 

and allow system parameters t o  deviate from t h e i r  nominal values. 

Then, a simple analytical  procedure based upon the Popov cr i te r ion  is 

presented t o  determine i n  t h e  parameter space the  region of parameter 

deviations which do not violate t he  absolute s t ab i l i t y .  

A graphical procedure fo r  evaluation of t he  absolute s t a b i l i t y  

regions i n  the parameter plane was given i n  reference [SI. Under 

cer ta in  conditions tha t  technique which is based upon the  envelope 
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cr i ter ion can also be extended t o  considerations i n  the parameter space. 

ABSOLUTE STABILIm I N  THE P m  SPACE 

The Problem of W ' e  [l] is formulated far a class of closed-loop 

control systems described by t he  equations 

(1) T x = PX i q + ( u ) ,  u = r x 

where x, q, r are real n-vectors, P i s  a r ea l  n x n matrix, the  pair  

(P,q) is  completely controllable, and + ( a )  is  a real continuous scalar 

function of the real scalar u such that it belongs t o  the  class  

AK : + ( O )  = 0, 0 u+(u) K U ~  . One asks: Is the equilibrium 

state of the system (1) asymptotically stable i n  t h e  large for  any 

+(a) € AK , i.e., is the  system absolutely stable. 

The most important solution of the Problem of Lur'e was given by 

Popov [2] i n  terms of t h e  frequency character is t ic  

which is t h e  transfer function of the  l inear  part of t h e  system (1) 

from t h e  input 4 t o  the output (-a), and X = 6+ Jw i s  the  complex 

variable. 

t h a t  if +(u) E AK and a l l  the roots of 

half-plane Re X < 6 <Os and if there  is a real number u such 

t h a t  a Popov type inequality 

Yakobovich [4 ]  generalized the results of Popov and proved 

IP - X I 1  = 0 are i n  the  

- 



is satisfied, then there ex is t  positive constants p and E such that, * 

fo r  any solution x ( t )  of (1) and any t t one has 

Ix( t ) l  2 plx( to) l  

il - 0' 

expE(6 - c ) ( t  - to)] 
I 

Yakubovich 141 also treated the forced system 

2 where +(a)  e A,' Cb(0) = 0 ,  0 a+(a) 

f ( t )  is a bounded function on the interval  (a, +-), and shoved tha t  

a modification of ( 3 ) ,  

KO , 0 a+' (a) < #co2 , 

assures tha t  there is a unique bounded solution 

(--, +.PI and t h a t  for  any x ( t )  and t - > to, one h a  

I x ( t )  - x o ( t ) J  5 p Ix(to) - xo(to)l 

paper [ 41, Yakubovich t reated t h e  discontinuous functions $(a)  and 

showed t h a t  the absolute s t ab i l i t y  is based upon the  s&e inequalit ies 

( 3 )  or ( 5 ) .  

xo( t )  of (1) on 

exp[(d - e ) ( t  - t o ) ] .  In the  same 

I n  application of the system (11, the  l inear  part of the system 

contains parameters which may deviate from t h e i r  nominal values. 

it is necessary t o  relax t h e  conditions on the  l inear  part of the system 

and allow these parameters t o  vary i n  some neighborhood of t h e i r  nominal 

values while preserving the absolute s t a b i l i t y  of the system. 

Then, 

Let  UB assume tha t  t he  transfer f'unction x(X,  p1,p2, , pI is 

,/' 



-- 
I 

- 
. A  
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a function of X and L parameters (pl, p2, ..., pk), and l e t  us 

suppose tha t  the  solution x ( t  , pl, p2, . . . , p,) , of (1) 

[SI for parameter values i n  a certain region R 

euclidian space 

s t a b i l i t y  for  system (1) can be reformulated t o  include the parameter 

is  well-defined 

of t h e  L-dimensional 
. I  

(pl,p2, ,pL) . Then, the  def ini t iawof absolute 

variations. 

The equilibrium s t a t e  x = 0 of t h e  system (1) is said t o  be 

absolutely stable i f  it is asymptotically stable i n  the  large fo r  any 

When the  system (1) is specified, one ' i s  interested eo find: (a) 

The greatest value of K and the largest  region R;  (b) A value of IC 

is given and the  largest  region R i s  t o  be determined. A graphical 

solution of these problems was given i n  [3] where the region 

determined by the  envelope cr i ter ion as the  largest  se t  { ( p1 ,p2 , ,pQ) d 

R w a s  

RI -H > 0 ,  vw - > 0 1. 

I n  t h i s  paper, a simple analytical solution is  presented which 

first yields the  region R i n  terms of a set of algebraic inequalit ies 

involving parameters. Then, a rectangular parallelepiped of maximum 

volume i s  imbedded i n  the  region t o  yield a convenient interpretation 

of the absolute s t a b i l i t y  region i n  the parameter space ( t h i s  i n t e r -  

pretation technique w a s  proposed by George [6,7] for approximation of 

f i n i t e  regions of asymptotic s t ab i l i t y  and l i n e a r  system analysis) ,  

Assume the t ransfer  function of t he  l inear  part t o  be a rat ional  

function of the complex variable X , 



7 Ck ak 
. k=O 

bk Ab 
k=O 

n > m  

il 

i n  which the  coefficients bk and ck are real functions of t he  

parameters pi( i  = 1, 2, ..., 11) . men, l e t  us express 

a k = K +  j rk 

where A = 6+ j w  , and 

Functions 9 and Yk can be easily calculated using the recurrence 

- 2X1Yk + formulas : \+l - 2X1% + (xl + y1 = 0, yk+l 
2 2 

+ (xl 2 + Y1 2 )Yk-l,= 0 ,  xo = 1, x1 - = 5 ,  Yo = 0, Y1 = w 0 

When 6 is specified i n  an absolute s tab i l i ty  problem, and (71, (8) 

are substituted in ( 3 )  or ( 5 ) ,  one obtains 

2n 

k=O 

where the  coefficients 

the parameters. For convenience, i n  (91, 1 / ~  and u of ( 3 )  are 

considered as parameters. Note that  u is not a physical parameter 

and only i ts  existence is required such that 

ak = $(pl, p2, . , p,) a re  real f'unctions of 

n > 0, v w 2 0 . 
From (g), one can readily conclude tha t  the system (11, or ( 3 ) ,  is  

absolutely stable if  t h e  corresponding polynomial w has no posit ive 
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real roots. For t h i s  t o  take place, it is suff ic ient  that t h e  following 

set  of algebraic inequalit ies 
ir 

a > O ,  %LO, ( k = 1 ,  2, ..., 2n) 
0 

(10) 

J 

is satisfied. 

For example, if t h e  t ransfer  function 

2 
3 + P2A + P 

X b ,  P1,P2’P3) = pl( X + 1 )  ( X+2 ) ( X+3 I’ 

IC = 1, and 6 = 0 ( A  = J w )  are specified, one obtains (9) as 

Inequalit ies (10) are  

(11) 

B O  6p1 + ?3 - 
49p1 + 1lp2 - 6p3 - 6 - > O 

p2 + 6 > o 14p1 - - 
PI ’ 0 

which determine the  boundaries of E . 
--  

Inequalit ies (10) specify a region R(R c R) of absolute s t a b i l i t y  

i n  the  parameter space which may appear t o  be an overly s t r i c t  region since 

(10) are only suff ic ient  conditions for  

(101, however, lead t o  a convenient interpretation of the s t a b i l i t y  regions. 

f > 0,’v w - > 0 . Conditions 
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INTERPRETATION PROCEDURE 

0 

After the inequalities (10) are specified, athe problem of using 

them in practical problems is essentially one of interpretation. Since 

the practical problems may involve more than two parameters, an I 

interpretation procedure for multi-parameter analysis is desired. 

In general, to interpret the absolute stability region, let us 

imbed a parallelepiped II into the convex region R determined by 

inequalities (10) which has sides perpendicular to the coordinate axes 

of the parameter space (pl, p2, . . , p,) 
stable point M(p 1, p2, ... , p,) . Let the volume v of II be 

defined as 

- 

and center at the known 
- -- - 

low, 

(10) 

the function v 

separately considered as a constraint. Thus, a constraint 

should be maximized with respect to each inequality 

may be represented as 

Substituting (16) into (14) and extremizing, a necessary condition for 

(p2 , p2 , ..., p O )  to occur at a maximum of v is that it be a 

solution to 

0 0 
1c 

av 
- I  0 ,  ( i  = 2, 3, 0 . 0 ,  L) 
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Standard suff ic ient  conditions f o r  t h i s  solution t o  be maximal are 

given in E8l. 
0 0  0 '  L e t  the  solutions (p, , p2 , ..., pg , ' (k = 0, 1, ..., 2n) 

occur at maximum value of v subject t o  constraints (lo), then the 

desired parallelepiped ll is given as 

J 

(i = 1, 2, ..., 11) (18) 

Since each vertex point of fl is located i n  R containing the  point 

M(pl, pz, ..., pg),  it follows that the  parallelepiped 11 is . 
completely imbedded i n  E, i.e., JI c TI . 
--  - - 

In case of t h e  above specific example, l e t  us choose the stable 

point g(0.2 ; 0 ; 0 )  . "he volume t o  be maximized is 

Maximization of v with respect t o  the  constraint 

4 g ~ ,  + l l p 2  - 6p3 - 6 = o 

= 0.226 . According t o  p3 = 0.178, p20 = -0.123, P1 yields : 

these values of parameters, the parallelepiped ll is  determined by 

- 0.21 2 0.022, lp21 2 0.123, I pgl 2 0.226 (21) 1% 
One can readily check that a l l  the vertex points of 

of the  constraints of (13). 

interpretat ion problem under consideration. 

n sa t i s fy  the  rest 

Therefore, (21) is t he  solution of the  



It should be noted tha t  some of the constraintsin (10) may not 

contain a l l  the  parameters, as it is c lear  from inequal i t ies  (13) 

Then, some of the  parameters i n  incomplete inequal i t ies  are arb i t ra ry  

and t o  make the  maximization of v meaningful, one should consider the 
I 

arb i t ra ry  parameters as constants. 

For example, the  optimization of v i n  (19) with respect t o  the  

+ 6 > 0 of (13) should be performed .with constraint  14p1 - p2 - 
p3 = c 

p1 = -0.122, p2 = 4.292. In applying equation (18) t o  determine the  

parallelepiped ll, these values are discarded and ll is  given by (21). 

(c # 0) Then, t he  maximization of v = 8c(p1 - 0 . 2 ) ~ ~  gives 
0 

In  case of the-varying parameters, by the  arguments of reference [I+ ] 

one can use the  inequality ( 5 )  and prove the  s t a b i l i t y  of e i the r  system 

(1) or  ( 3 ) .  

determined region R (or n) the  system is absolutely s table .  

Then, as long as the  parameters are varied inside the  
- 
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